
Logiczzle
Gabby Wright, Michaela Murray, Yifei He

Game Generator Game Solver
Automatically generate

a logic puzzle
Automatically solve

a logic puzzle

(Almost) Natural Language
Generator & Parser

Parse strict language input
Output language

Why logic programming?
1. Logic programming is logical → it is the most logical

choice to solve/generate a logic puzzle!

2. Relations work two-way → can solve ⇔ can generate

Items (emojis) with categories
…
item(animal-bird,"turkey","🦃")
item(animal-bird,"chicken","🐔")
item(animal-bird,"duck","🦆")
…
item(animal-mammal,"wolf face","🐺")
item(animal-mammal,"fox face","🦊")
item(animal-mammal,"panda face","🐼")
…
item(book-paper,"green book","📗")
item(book-paper,"blue book","📘")
item(book-paper,"orange book","📙")
…
item(country-flag,"Canada","󰎟")
item(country-flag,"China","󰎩")
item(country-flag,"United States","󰑔")
…
item(food-fruit,"strawberry","🍓")
item(food-fruit,"kiwi fruit","🥝")
item(food-fruit,"tomato","🍅")
…

Natural Language Generator & Parser
● The natural language generator is able to create a series of rules based on the set of

emojis in the lambda.
● The natural language parser is able to take a series of inputted rules and convert

them into the clue text format.
● Example for converting between clue constructor and “natural” language:

○ “󰏅 is ❤” ⇔ clue(["󰏅","❤"],is)
○ “💚 is ☕” ⇔ clue(["💚","☕"],is)
○ “💜 is to the left of 💚” ⇔ clue(["💜","💚"],is_to_the_left_of)
○ “󰏅 is to the right of 🐴” ⇔ clue(["󰏅","🐴"],is_to_the_right_of)
○ “🦊 is to either side of C” ⇔ clue(["🦊","C"],is_to_either_side_of)
○ “🥛 is at position 3” ⇔ clue(["🥛",3],is_at_certain_location])
○ ...

Natural Language Generator & Parser
● We also aim to parse more natural input with verbs.
● Based on the verb used in the particular rule, we represent the statement in an easy to

read/represent format.
● Example for converting between natural language statement and clue constructor:

○ “󰎟 has 🐻” ⇒ clue(["󰎟","🐻"],is)
○ “🦊 loves 🚗” ⇒ clue(["🦊","🚗"],is)
○ “✈ is owned by 󰥚” ⇒ clue(["✈","󰥚"],is)
○ “🐴 lives to the right of 🦊” ⇒ clue(["🐴","🦊"],is_to_the_right_of)
○ “󰏅 lives to the left of 󰎟 ” ⇒ clue(["󰏅 ","󰎟 "],is_to_the_left_of)
○ “☕ is drunk next to 💜 ” ⇒ clue(["☕ ","💜"],is_to_either_side_of)
○ “󰏅 lives at #5” ⇒ clue(["󰏅",5],is_at_certain_location)
○ ...

...
verb("has")
verb("have")
verb("had")
verb("having")
verb("love")
verb("loves")
...

Logic Puzzle Solver - First Step

Text interface:GUI interface:

Nationality 󰐘 󰑒 󰏅 󰎼 󰏦
Color 💛 💙 ❤ 💜 💚
Drink 💧 🍵 🥛 🥤 ☕
Pet 🦊 🐴 🐌 🐶 🦓

Smoke K C O L P

Example: For the Zebra Puzzle, a sample output would look like this:

Logic Puzzle Solver - Second Step

Logic Puzzle Solver
solve_puzzle(Ans) :- createMNMatrix(Ans,5,5) & rules(5,5,
 [

clue(["Englishman","Red"],is),
clue(["Spaniard","Dog"],is),
...
clue(["Ivory","Green"],is_to_left_of),
clue(["Snails","Old Gold"],is),
clue(["Fox","Chesterfield"],is_to_either_side_of),
clue(["Norwegian","Blue"],is_to_either_side_of),
clue(["Horse","Kools"],is_to_either_side_of),
clue(["Water"],is_type),
clue(["Norwegian",1],is_at_certain_location),
clue(["Milk",3],is_at_certain_location),
clue(["Zebra"],is_type)

], [
listpair(0,nationality),
listpair(1,color),
listpair(2,drink),
listpair(3,pet),
listpair(4,smoke)

], Ans
)

item(nationality,"Norwegian","󰐘")
item(nationality,"Ukrainian","󰑒")
item(nationality,"Englishman","󰧹
")
item(nationality,"Spaniard","󰎼")
item(nationality,"Japanese","󰏦")

...

item(drink,"Water","🚰")
item(drink,"Tea","🍵")
item(drink,"Milk","🥛")
item(drink,"Orange juice","🥤")
item(drink,"Coffee","☕")

...

item(pet,"Fox","🦊")
item(pet,"Horse","🐴")
item(pet,"Snails","🐌")
item(pet,"Dog","🐶")
item(pet,"Zebra","🦓")

Logic Puzzle Solver

solve_puzzle(Ans) :- createMNMatrix(Ans,5,5) & rules(5,5,
 [

clue(["Englishman","Red"],is),
...
clue(["Zebra"],is_type)

], [
listpair(0,nationality),
listpair(1,color),
listpair(2,drink),
listpair(3,pet),
listpair(4,smoke)

], Ans
)

[
["Norwegian", "Ukrainian", "Englishman", "Spaniard", "Japanese"],
["Yellow", "Blue", "Red", "Ivory", "Green"],
["Water", "Tea", "Milk", "Orange juice", "Coffee"],
["Fox", "Horse", "Snails", "Dog", "Zebra"],
["Kools", "Chesterfield", "Old Gold", "Lucky Strike", "Parliament"]

]

Logic Puzzle Generator
1. Generate an answer set
In this case, it is a 4 × 5 puzzle, with category “animal-mammal”, “food-sweet”,
“person-role”, and “country-flag”.

[
["🐺", "🦊", "🐱", "🐯", "🐰"],
["🍰", "🍬", "🍦", "🍩", "🍪"],
["󰟾", "󰞵", "󰥤", "󰥗", "󰥠"],
["󰑔", "󰏅", "󰏃", "󰐮", "󰎩"],

]

Logic Puzzle Generator
2. Generate all possible clues
[clue(["🐺","🍰"],is),
 clue(["🐺","󰟾"],is),
 ...
 clue(["🐰","󰎩"],is),
 clue(["🐺","🦊"],is_to_left_of),
 clue(["🐺","🍬"],is_to_left_of),
 ...
 clue(["󰐮","󰥠"],is_to_left_of),
 clue(["󰐮","󰎩"],is_to_left_of),
 clue(["🦊","🐺"],is_to_right_of),
 clue(["🍬","🐺"],is_to_right_of),
 ...
 clue(["󰥠","󰐮"],is_to_right_of),
 clue(["󰎩","󰐮"],is_to_right_of),
 ...
 % (CONTINUED TO NEXT PAGE)

[
 ["🐺", "🦊", "🐱", "🐯", "🐰"],
 ["🍰", "🍬", "🍦", "🍩", "🍪"],
 ["󰟾", "󰞵", "󰥤", "󰥗", "󰥠"],
 ["󰑔", "󰏅", "󰏃", "󰐮", "󰎩"],
]

Logic Puzzle Generator
2. Generate all possible clues
 % (CONTINUED FROM LAST PAGE)
 clue(["🐺","🦊"],is_to_either_side_of),
 clue(["🦊","🐺"],is_to_either_side_of),
 ...
 clue(["󰐮","󰎩"],is_to_either_side_of),
 clue(["󰎩","󰐮"],is_to_either_side_of),
 clue(["🐺",1],is_at_certain_location),
 clue(["🍰",1],is_at_certain_location),
 ...
 clue(["󰥠",5],is_at_certain_location),
 clue(["󰎩",5],is_at_certain_location)
]

3. Randomly choose some clues from all the possible clues.
Aim to choose minimum number that makes the puzzle solvable.
Problem: might be inefficient - have to generate thousands of clues. Alternative: generate clues then try solve it?

[
 ["🐺", "🦊", "🐱", "🐯", "🐰"],
 ["🍰", "🍬", "🍦", "🍩", "🍪"],
 ["󰟾", "󰞵", "󰥤", "󰥗", "󰥠"],
 ["󰑔", "󰏅", "󰏃", "󰐮", "󰎩"],
]

Logic Puzzle Generator - First Step

Green background when the item in the cell is compliant
to the clues related to this item (but green cell does not
necessarily mean that is the correct answer).

Red background when the item in the cell raise a
contradiction to the clues related to this item.

The clues will be automatically
checked/unchecked based on whether
selection above satisfied this clue.

A “Hint” button automatically generates a new hint.

Player can rate a puzzle as easy, medium or hard after
they have solved the puzzle. User-aggregated data
determines the difficulties of a particular (random) puzzle.
They can also share or save the puzzle.

Related statistics: user rating, numbers of hints needed,
time used to solve it

Logiczzle
Gabby Wright, Michaela Murray, Yifei He

